

Traitement du lactosérum présentation d'une solution d'avenir

Jacques CAPDEVILLE & Yves LEFRILEUX – Institut de l'Elevage

LACTOSERUM

- Concentration organique bien supérieure aux eaux blanches (de 50 à 90 g DCO / litre contre 2.5 à 3 g DCO / litre pour les eaux blanches)
- Volume et concentration en DCO du lactosérum sont liés à la technologie

INSTITUT DE L'ELEVAGE

Caractéristiques

		•						
Type d'effluent	рН	Volume par litre de lait	DCO (g/L)	DCO / DBO5	N tot g/l	ME S g/L	P tot g/L	Graisse s g/L
Eaux blanches	5.5 à 6.2	3.5	2.9					0.2 à 0.3
Salle	de traite	0.7		1.3	0.2	0.7	0.18	0.35 /
Fre	omagerie	2.8						0.86
								0.2
Lactosérum lactique	4.3	0.7	50 à 70	1.5	1.8	3.8	0.8	0.3
Lactosérum pâtes pressées	6	0.90	80 à 90	1.5	0.6 à 1	8 à 11	_	0.5
Mélange eaux blanches - lactosérum	4 à 4.5	4.2	10 à 14	1.7 à 1.8	0.2 à 0.5	1.3	0.28	0.3
Eaux domestiques	7 à 8	150/pers.	0.8 120 g/j	1.9	0.1 (15 g/)j	0.25	0.01 5	_

Exemple 80 chèvres avec 300 litres lait/jour au pic

Cas 1

Rejet des eaux blanches seules

20 habitants

1 chèvre # 0.25 habitant

80 chèvres

300 I lait

Cas 2

Rejet des eaux blanches <u>et</u> du lactosérum

150 habitants

1 chèvre # 1 à 2 habitants

Variabilité des effluents fromagers

- Taux de récupération du lactosérum
- Quantité d'eau utilisée pour le nettoyage
 - Purge des résiduels de lait
 - Techniques de moulage et pertes
- Dosage des produits nettoyants et désinfectants
 - Technologies fromagères
 - Espèces

Récapitulatif

- Les effluents fromagers sont des effluents très chargés en matière organique
 - Comparaison avec des eaux usées domestiques :

- Eaux blanches: 3 à 4 x

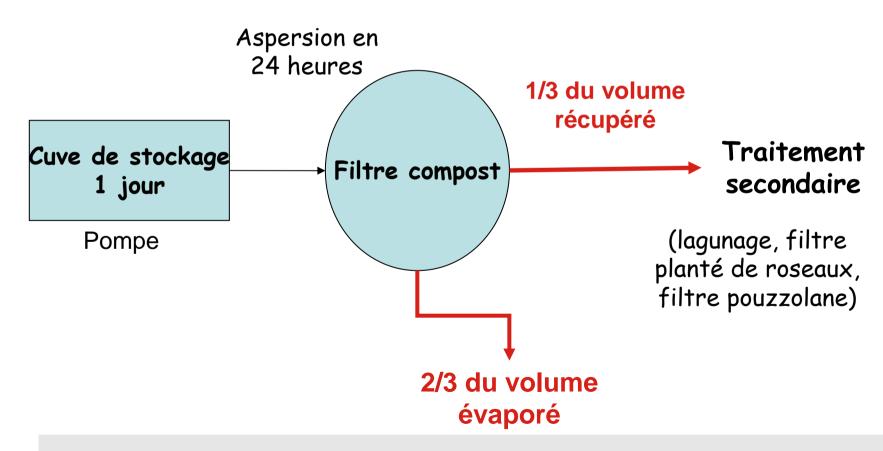
Lactosérum : 60 à 80 x

Eaux blanches et lactosérum : 12 à 20 x

- Poids très important du lactosérum dans la charge finale de l'effluent
- Raisonner les systèmes d'épuration en fonction de la présence ou non de lactosérum

UNE SOLUTION D'AVENIR EN COURS D'EXPERIMENTATION

Le filtre biologique à compost

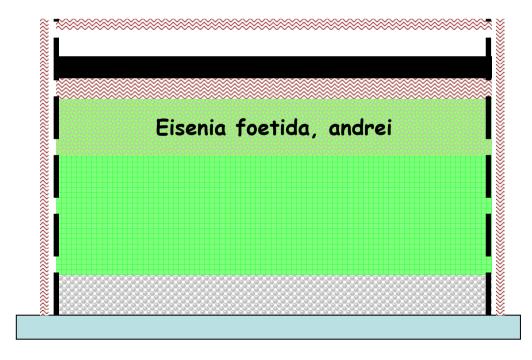


FILTRE BIOLOGIQUE A COMPOST

- Pré-traitement du lactosérum pur :
 - Traitement biologique par dégradation aérobie
 - Évaporation partielle de la phase liquide
- Déjà testé en alpage # 3 à 4 mois
 - Comportement en période hivernale?
 - Gestion des périodes d'arrêt de production?

FILTRE BIOLOGIQUE A COMPOST

 Schéma théorique de fonctionnement à partir des données bibliographiques initiales



FILTRE BIOLOGIQUE A COMPOST

 La proposition technique initiale pour la réalisation du filtre : la lombrifiltration

Treillis soudé

Géotextile

Système d'aspersion 15 cm bois trituré

1 m compost

20 cm galets : drainage

Dalle ou géomembrane

FILTRE BIOLOGIQUE A COMPOST

Filtre à compost

- Déchets verts
- Granulométrie < 25 mm (très fine)
- Action mécanique des lombrics : aération + brassage

<u>Dimensionnement théorique initial</u>

et test d'une charge double à 40l/m2

- Charge hydraulique : 20 litres / m2 / jour de pic
- Soit 1.4 kg DCO/m2/jour

FILTRE BIOLOGIQUE A COMPOST

Les possibilités de traitement

type de produits	Filtre à compost de déchets verts			
laits non commercialisables : laits mammiteux, colostrum	non			
eaux brunes, jus de silos	non			
Lactosérum	oui			
eaux vertes de l'aire d'attente	non			
eaux vertes quais de traite et fond fosse de traite	non			
eaux blanches	non			
eaux usées domestiques	non			

FILTRE BIOLOGIQUE A COMPOST

exemples antérieurs à l'expérimentation en cours

Site 1: 60 vaches laitières (Suisse)

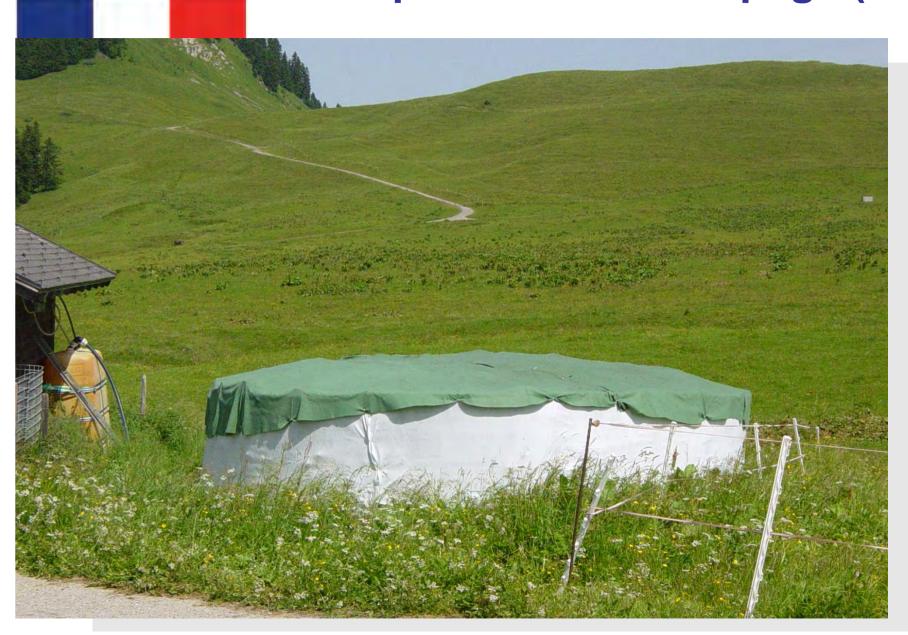
1000 litres lait / jour ⇒ 900 litres de lactosérum/jour

- 100 litres cochons
- 800 litres traités

22 m2 filtre [36 l/m2 # 2.18 kg DCO/m2]

Site 2 : 120 vaches laitières (Suisse)

3000 litres lait / jour pic ⇒ **2000 litres de lactosérum/jour**


100 m2 filtre (2 unités) [20 l/m2 # 1.2 kg DCO/m2]

Site 3: 380 vaches laitières (Savoie)

6000 litres lait / jour

1200 litres de lactosérum traités sur 45 m2 de filtre [26 l/m2 #1.6 kg DCO/m2]

Un dispositif testé en alpage (74)

Autres réalisations expérimentales antérieures

Cuve de stockage du lactosérum

Filtre de compost déchets verts

Couverture en bois trituré

Bâchage de l'ensemble du filtre

Installation test dans un élevage fromager de l'Ariège

- Elevage fromager avec 265 chèvres + lait de vache
 - 260 000 litres de lait de chèvre
 - 80 000 litres de lait de vache
- Production de lactosérum : 1100 litres/j au pic

stallation test dans un élevage fromager en Ariège les principes retenus

- Lactosérum prétraité par le tumulus de compost
 - Démarrage de l'expérimentation avec lombrifiltration
- Les autres effluents et la sortie du tumulus sont traités par
 - Bassin Tampon de Sédimentation
 - et Filtre planté de Roseaux avec recyclage
- Mise en service du tumulus :
 - mai 2009
- Mise en service de la filière complète :
 - septembre 2010

Installation test dans un élevage fromager en Ariège

Des analyses réalisées sur plus d'un an

- Des concentration en entrée très élevées
 - Dépendantes des techniques de transformation fromagère
 - ATTENTION à la méthode de prélèvement des échantillons
 - Mélange fréquent de solides et de liquides
 - Des valeurs de DCO comprises entre 72g/l et 289g/l (???)
 - Entre 72 et 98g/l si prélèvement de liquide seul
 - Azote (Kjeldhal) entre 800mg/l et 1500mg/l si prélèvement de liquide seul

Un rendement épuratoire très élevé

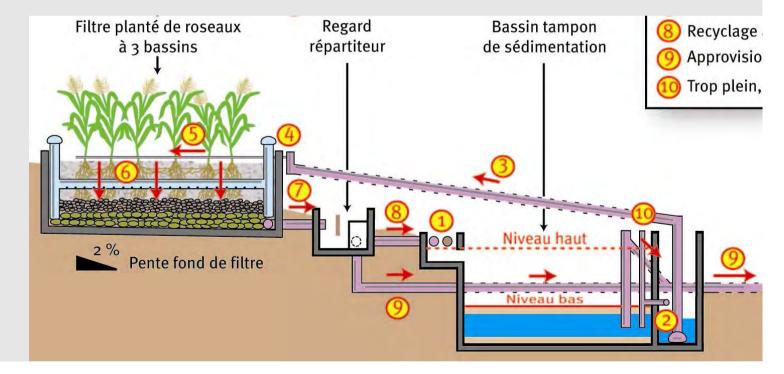
- Des concentrations en sortie basses
 - Concentration entre 6000mg/l et 8000mg/l de DCO
 - Soit seulement 7 à 8% de la charge moyenne à l'entrée
 - Rendement moins élevé sur les premiers mois
 - » Toujours supérieur à 80%
 - Rendement épuratoire sur l'azote :
 - Entre 60% et 80%
- Des performances obtenues en l'absence de lombrics
 - Mort rapide de tous les lombrics implantés

Un ensemencement en lombrics « soigneux », mais ...

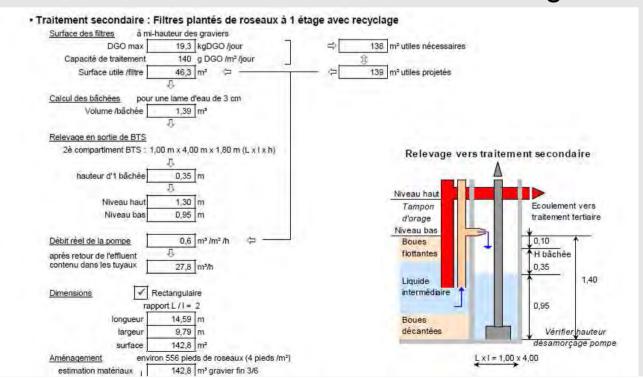
- Malgré la qualité de « l'ensemencement » en lombrics
 - Disparition complète de la population
 - Compost trop frais -> montée en température trop forte

Un fonctionnement hydraulique difficile à maîtriser

- Le réseau enterré d'aspersion a été sujet au bouchage
 - Alimentation alternée une semaine sur deux de la moitié du tumulus
 - Réseau d'abord enterré
 - En « surface » maintenant
 - Protection contre le gel?



Le pré-traitement par filtre à compost fait partie d'une filière plus complète


- L'objectif du pré-traitement est atteint :
 - Le produit en sortie est un « effluent peu chargé »
- Il peut donc entrer en mélange avec tous les autres effluents peu chargés de l'exploitation
 - Choix d'une filière
 - BTS suivi d'un filtre planté de roseaux avec recyclage

Un dimensionnement « prudent » de la filière de traitement

- Nous avons retenu des performances minorées
 - Volonté d'avoir une importante marge de sécurité
 - Éviter la saturation des capacités épuratoires en cas d'accident
 - Garantir une excellente qualité de traitement
- Un dimensionnement effectué avec le logiciel DEXEL

INSTITUT DE L'ELEVAGE

Réalisation de la filière complète au cours de l'été 2010

Un suivi complémentaire en cours

- Validation de l'ensemble de la filière de traitement
 - Qualité du traitement
- Nécessité de s'assurer de la pérennité des solutions techniques retenues
 - Le mode d'emploi au quotidien
 - L'entretien des filtres plantés
 - L'entretien du tumulus de compost
 - Remplacement ou simple rechargement annuel du tas?
 - Quels risques de colmatage en surface sur le moyen terme?
 - Un objectif affiché : ne jamais avoir à remplacer complètement le compost ->
 - » un binage mécanique de surface annuel + recharge de 30cm?
 - Les risques de bouchage du réseau d'aspersion?
 - La protection contre le gel

Des travaux de validation de solutions techniques à la ferme du PRADEL

- Validation de la meilleure combinaison entre
 - Hauteur du compost et granulométrie
 - Qualité du traitement?
 - Risques de colmatage?
 - Entrainement des « fines »
 - Des MES générées par le compost
- Une première série de travaux en 2010
 - Des compléments nécessaires
 - Nature du compost : origine et granulométrie
 - Conséquences sur le coût du produit